Environmental Protection Agency

T88 Titanium Dioxide Chloride Process Oxidation Reactor

T89 Methane Reforming Furnace

T90 Pulping Liquor Recovery Furnace

T91 Combustion Device Used in the Recovery of Sulfur Values From Spent Sulfuric Acid

T92 Halogen Acid Furnaces

T93 Other Industrial Furnaces Listed in 40 CFR 260.10 (specify)

(f) Other Treatment

T94 Containment Building (Treatment)

3. Disposal

D79 Underground Injection

D80 Landfill

D81 Land Treatment

D82 Ocean Disposal

D83 Surface Impoundment (to be closed as a landfill)

D99 Other Disposal (specify)

4. Miscellaneous

X01 Open Burning/Open Detonation

X02 Mechanical Processing

X03 Thermal Unit

X04 Geologic Repository

X99 Other (specify)

[45 FR 33232, May 19, 1980, as amended at 59 FR 13892, Mar. 24, 1994; 71 FR 40276, July 14, 2006]

APPENDIX II TO PART 265 [RESERVED]

APPENDIX III TO PART 265—EPA INTERIM PRIMARY DRINKING WATER STANDARDS

Parameter	Maximum level (mg/l)
Arsenic	0.05
Barium	1.0
Cadmium	0.01
Chromium	0.05
Fluoride	1.4-2.4
Lead	0.05
Mercury	0.002
Nitrate (as N)	10
Selenium	0.01
Silver	0.05
Endrin	0.0002
Lindane	0.004
Methoxychlor	0.1
Toxaphene	0.005
2,4-D	0.1
2,4,5-TP Silver	0.01
Radium	5 pCi/1
Gross Alpha	15 pCi/1
Gross Beta	4 millirem/yr
Turbidity	1/TU
Coliform Bacteria	1/100 ml

[Comment: Turbidity is applicable only to surface water supplies.]

APPENDIX IV TO PART 265—TESTS FOR SIGNIFICANCE

As required in §265.93(b) the owner or operator must use the Student's t-test to determine statistically significant changes in the concentration or value of an indicator parameter in periodic ground-water samples when compared to the initial background concentration or value of that indicator parameter. The comparison must consider individually each of the wells in the monitoring system. For three of the indicator parameters (specific conductance, total organic carbon, and total organic halogen) a singletailed Student's t-test must be used to test at the 0.01 level of significance for significant increases over background. The difference test for pH must be a two-tailed Student's t-test at the overall 0.01 level of significance.

The student's t-test involves calculation of the value of a t-statistic for each comparison of the mean (average) concentration or value (based on a minimum of four replicate measurements) of an indicator parameter with its initial background concentration or value. The calculated value of the t-statistic must then be compared to the value of the t-statistic found in a table for t-test of significance at the specified level of significance. A calculated value of t which exceeds the value of t found in the table indicates a statistically significant change in the concentration or value of the indicator parameter.

Formulae for calculation of the t-statistic and tables for t-test of significance can be found in most introductory statistics texts.

APPENDIX V TO PART 265—EXAMPLES OF POTENTIALLY INCOMPATIBLE WASTE

Many hazardous wastes, when mixed with other waste or materials at a hazardous waste facility, can produce effects which are harmful to human health and the environment, such as (1) heat or pressure, (2) fire or explosion, (3) violent reaction, (4) toxic dusts, mists, fumes, or gases, or (5) flammable fumes or gases.

Below are examples of potentially incompatible wastes, waste components, and materials, along with the harmful consequences which result from mixing materials in one group with materials in another group. The list is intended as a guide to owners or operators of treatment, storage, and disposal facilities, and to enforcement and permit granting officials, to indicate the need for special precautions when managing these potentially incompatible waste materials or components.

This list is not intended to be exhaustive. An owner or operator must, as the regulations require, adequately analyze his wastes so that he can avoid creating uncontrolled